Naval Research Laboratory
Stennis Space Center, MS 39529-5004

NRL/FR/7441--96-9651

An Initial Design of Extended Vector
° Product Format for Modeling
and Simulation

®
KEVIN SHAW H. VINCENT MILLER
Mapping, Charting, and Geodesy Branch Mississippi State University

® Marine Geosciences Division ¥ Stennis Space Center, MS
MAHD!I ABDELGUERFI BarBARA RAY
EpGar CoOPER ROBERT BROOME
CHris WYNNE Tom FETTERER

o University of New Orleans Planning Systems Incorporated
New Orleans, LA Slidell, LA

o

| August 26, 1996

o "PTIC QUALITY THSPECTED 2

Approved for public release; distribution unlimited.

19960917 08

REPORT DOCUMENTATION PAGE o Ao

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden or any other aspect of this collection
of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
August 26, 1996 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
. Job Order No. 574590806
An Initial Design of Extended Vector Product Format for Modeling and Simulation
Program Element No. RDT&EDA

6. AUTHOR(S) Project No.

Kevin Shaw, Mahdi Abdelguerfi*, Edgar Cooper*, Chris Wynne*, H. Vincent Miller®, Task No.

Barbara Ray'!, Robert Broome', and Tom Fetterer't Accession No. DN153251
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

Naval Research Laboratory

Marine Geosciences Division NRL/FR/7441--96-9651
Stennis Space Center, MS 39529-5004

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
Naval Research Laboratory

Marine Geosciences Division

Stennis Space Center, MS 39529-5004

11. SUPPLEMENTARY NOTES

*University of New Orleans, New Orleans, LA; "Mississippi State University, Stennis Space Center, MS; f'Planning Systems Incorporated,
115 Christian Lane, Slidell, LA

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

The Digital Mapping, Charting, and Geodesy Analysis Program (DMAP) has been tasked with making the Defense Mapping
Agency’s (DMA) georelational Vector Product Format (VPF) more amenable to the Modeling and Simulation community. Under
the direction of DMA’s Terrain Modeling Program Office and the Defense Modeling and Simulation Office, DMAP has used
requirements survey analyses and user feedback to devise a draft Extended VPF (EVPF), utilizing the design constraint of a
relational database model. EVPF incorporates a new primitive structure for incorporating a Triangulated Irregular Network (TIN)
as a means of representing three-dimensional surfaces. While VPF allows for the storage of three dimensions, this concept has
traditionally been exploited primarily as elevation attributes of features. EVPF also stresses the use of attribute tables for storing
rendering information. Using variable-length attribute fields, a current VPF capability not used to its fullest extent is also
recommended for richer feature attribution.

14. SUBJECT TERMS 15. NUMBER OF PAGES
24
digital MC&G, performance analysis, modeling and simulation 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified Same as report
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
1 298-102

CONTENTS

EXECUTIVE SUMMARY ...ociiiiiiiiciiniiinientretetesessesesseseestenssssssssessesessesssesessenessssstosesssaes E-1
1.0 INTRODUCTION ..uoriititititcnitcesictnnississesesstsisssss st s sessssststsestesssntnsssssssesessacssssasessesenensssscnes 1
2.0 TRIANGULATED IRREGULAR NETWORKSocoiniicinicnseninieniesacentecessessnsesessecesns 1
3.0 DATA STRUCTURE SCHEMATAS FOR TINScoovitiirmtmrnnnisternnsisissesnsesssessesssnssssssesssaes 2
3.1 Encoding TINs Using VPF’s Winged-Edge Topologycccvmnininvnicinnncnincncnrciiencen, 3

3.2 Encoding TINs Using a Vertex-Based Data StrucCtureccovvevvmriincrniivnnvecsccnens 5

3.3 Encoding TINs Using a Triangle-Based Data StrucCtureccoeeceeceereeneercrreeceereecnceasenencenes 6

3.4 Encoding TINs Using an Improved Triangle-Based Data Structureccceceeeecrenuenee 6

4.0 COMPARATIVE ANALYSIS OF THE TIN SCHEMATAS.......ccoiniieininreinrnsesesesiseananes 7
5.0 EVPF TABLE DEFINITIONSooiititiitcticiecittntessesessesessssessesessessosssssssonsonsasssessnes 9
6.0 TINS IN TILED COVERAGEScoteetetictteesctesesaesessssaeasscstesesesssasssesssssseseseassesens 12
7.0 A COMPREHENSIVE EXAMPLEuiiiiiirneieciecnsncnicecesenesesseeessasenesessesenssssseseasessesesns 13
8.0 PRIMITIVE ATTRIBUTE TABLES AND MULTIVALUED ATTRIBUTES..........ccoeueueee. 17
9.0 SOFTWARE CONSIDERATIONSouomiiiciiiteisentsesescsissssesssesssssssassessesessssessssessssnsoses 17
10.0 CONCLUSIONS ...ttt et s etsssstsasessssssssssessentassseasessessestasassssnsssessssessass 17
11.0 RECOMMENDATTIONSooitiiiiiiniitetictntestetesssesssesesesesssesassssesssessssossssasesencsensssesssensssass 18
12.0 ACKNOWLEDGMENTS ...ttt sssentscsstsassenesasssasesessassassssesasasstsasasassnsnsan 18
13.0 REFERENCES ...ttt sicscsseisesssesessssssessasessssestossesassasassenssssasassssassssessesaens 18
APPENDIX — ACTONYIL LSt weivuiriiiieniiiiiivreeninnirresercseesensensseesaeasesssssessssssssssssstssssssnsessesssssnsssasssssssasss 21

iii

EXECUTIVE SUMMARY

With support from the Defense Mapping Agency’s (DMA) Terrain Modeling Program Office
and the Defense Modeling and Simulation Office, the Digital Mapping, Charting, and Geodesy
Analysis Program (DMAP) has investigated modifications to DMA’s current Vector Product
Format (VPF) that would benefit the Modeling and Simulation (M&S) community while preserving
the relational database model approach of VPF, a design constraint. In its present form, VPF has
been documented as not meeting requirements of this particular community, mostly in its treatment
of three-dimensional (3-D) data. DMAP proposes an extended VPF (EVPF), whereby 3-D surfaces
may be stored in VPF’s georelational format. As pointed out by DMAP, the VPF standard currently
possesses the capability of storing Triangulated Irregular Networks (TINs), a popular format for
representing 3-D surfaces. However, after an investigation of this VPF-based structure, as well as
triangle-based and vertex-based data structures, DMAP has concluded that an improved triangle-
based data structure for incorporating TINs is optimal with respect to access time, coupled with
only a marginal increase in storage space when compared to the standard triangle-based data
structure. The use of primitive attribute tables and multivalued attributes is also proposed. These
extensions should provide the M&S community with a basic format for utilizing vector data.

AN INITIAL DESIGN OF EXTENDED VECTOR PRODUCT FORMAT FOR
MODELING AND SIMULATION

1.0 INTRODUCTION

The Extended Vector Product Format (EVPF) (Shaw et al. 1996) is a georelational database
format designed specifically to meet the vector requirements of the Modeling and Simulation (M&S)
community. Its most prominent modification to the Vector Product Format (VPF), its precursor, is
the addition of three-dimensional (3-D) representation of surfaces of objects. This representation
is based on a new set of tables defined to support a Triangulated Irregular Network (TIN). With this
new representation, a surface (e.g., a terrain) can be modeled with relational tables similar to those
offered by VPF.

Other extensions include a method of introducing attribution which, by its nature, is useful only
in the visual representation of objects. These are similar to what VPF defines as the feature attribute
table. The primitive attribute table allows for the storage (directly, or indirectly via a related
attribute table) of information useful in the rendering of objects.

Finally, to fully describe features, EVPF allows for specific attributes to be multivalued. Variable-
length fields are used to model such situations.

2.0 TRIANGULATED IRREGULAR NETWORKS

Rectangular grids and TINs are the two primary techniques used to represent digital elevation.
Rectangular grids, such as those used in the Defense Mapping Agency’s (DMA) (Littlefield 1995)
Digital Terrain Elevation Data (DTED) databases, are characterized by their simplicity and regu-
larity. Because rectangular grids are bound by their regularity, they do not adapt to the complexity
of the terrain being modeled.

The TIN model approximates a topographic surface using a network of planar, nonoverlapping,
and irregularly shaped triangle faces (Floriani 1987). The irregular shape of the triangles allows
TINs to easily adapt to the roughness of the terrain, thus providing a surface representation using
a limited amount of data. For instance (Polis and McKeown 1992), a DTED rectangular grid
composed of 90,000 nodes is reduced to only 563 nodes using TINs. The ability of the TIN model
to adjust its resolution based on the complexity of the terrain being modeled makes it more efficient
in a wide range of applications, including real-time display and automated terrain analysis (Polis
and McKeown 1992; Polis and McKeown 1995). Another important advantage of the TIN model
is that it can incorporate surface-specific constraints such as prespecified linear and area features
(Floriani 1987; Floriani 1989).

One goal of this study is to extend the VPF (Department of Defense 1993) to allow for the
efficient storage and access of TIN-based elevation data. It is a further goal of this study to
investigate the efficient integration of terrain elevation data with ground surface features. Finally,
EVPF is to provide a fully 3-D data structure for improved modeling and simulation exploitation.

1

2 Shaw et al.

Using VPF’s connected-node, edge, and face geometric primitives, TINs can be encoded. However,
the Digital Mapping, Charting, and Geodesy Analysis Program (DMAP) will show in this report
that such a scheme is inefficient. Two alternate encoding schemes, the vertex-based and triangle-
based data structures, are evaluated. The evaluation takes into account the storage requirement of
each data structure and the time complexity to retrieve those basic relationships (between primitives)
that are not explicitly encoded into the data structure. An improved triangle-based data structure is
shown to exhibit better overall performance.

This report’s analysis of TINs is organized as follows. In Secs. 3.0 and 4.0, the VPF’s winged-
edge topology, the vertex-based, triangle-based, and improved triangle-based data structures are
introduced and compared based on their ability to efficiently encode TIN-based elevation data. An
extended VPF (EVPF) is introduced in Sec. 5.0. Handling TIN elevation data in the presence of
tiles is presented in Sec. 6.0. A comprehensive example that includes TIN elevation data and linear
and area features is given in Sec. 7.0.

3.0 DATA STRUCTURE SCHEMATAS FOR TINS

Triangles, edges, and vertices (also called nodes) are the three primitives of the TIN topographic
surface model. Triangles and edges are similar to VPF’s faces and edges (Department of Defense
1993) except that:

¢ A TIN’s triangle is bounded by exactly three edges, three nodes, and three adjacent triangles;
* Unlike an arbitrary face, a TIN’s triangle cannot have an edge inside;
» Each triangle’s edge is completely characterized by its two extreme nodes.

Clearly, an efficient data structure to encode TINs should take advantage of these three characteristics.

As stated in (Floriani 1989 and Woo 1985), nine adjacency relations can be defined between
pairs of primitives (Fig. 1). In Fig. 1, a directed arc represents an ordered relation between two
primitives. For example, the relation edge — node stores the two extreme nodes of each edge. A
data structure to encode TINs will, in general, combine the three primitives with a subset of the
adjacency relations. Clearly, encoding more adjacency relations leads to an increase in the amount
of storage requirement but improves the data access efficiency. Altogether, there are more than five
hundred possible schematas forming eight storage classes (Woo 1985). Some adjacency relations,

o

NODE

Fig. 1 — Nine relations between three geometric
primitives

EDGE FACE

> >

An Initial Design of Extended VPF for Modeling and Simulation 3

such as node — edge, are one-to-many and, as a result, are less convenient to store than constant
relations. This has lead to the introduction of partial (also referred to as fractional) relations (Baumgart
1972). For instance, the relation face - edge can be partially stored by having a face point to only
one of its many possible edges. This partial relationship between a face and its enclosing edges is
used in VPF’s winged-edge topology (Department of Defense 1993). It is noted that the introduction
of partial relationships between the three primitives leads to a dramatic increase in the number of
possible schematas. ‘

The most common data structures to encode TINs are the vertex-based and triangle-based
structures (Floriani 1989; Jones et al. 1994). VPF’s winged-edge topology can also be utilized to
store TINs. In the following sections, the performance of these three data structures will be inves-
tigated. The performance of a TIN data structure is evaluated in terms of its storage requirement
and the time complexity to retrieve those basic relationships (between geometric primitives) that
are not directly encoded into the data structure. Woo (Woo 1985) identifies nine access primitives
(Table 1). Some of these access primitives form the basis of geometric algorithms used to perform
tasks such as contour extraction and interpolation.

3.1 Encoding TINs Using VPF’s Winged-Edge Topology

In VPF, an arbitrary face is stored using the structure shown in Fig. 2. These relationships
include an edge table that stores:

* A unique edge ID;
* The one-to-many relationship between an edge and its nodes;
* A partial relationship between an edge and the edges connected to it; and

» The relationship between an edge and its two adjoining faces, referred to in VPF as left face
and right face.

In VPF’s level 3 topology (Department of Defense 1993), each edge stores pointers to two of the
edges to which it connects. These two edges, known as left edge and right edge, are determined by
the edge direction as shown in Fig. 3.

Table 1 — Nine Access Primitives

ACCESS

PRIMITIVE DESCRIPTION
AC1 Given triangle i find its three nodes
AC2 Given triangle i find its three edges
AC3 Given triangle i find its three adjacent triangles
AC4 Given node i find the #; triangles in which it’s contained
ACS5 Given node i find the n; nodes to which it connects
AC6 Given node i find the e; edges in which it’s contained
AC7 Given edge i find its two extreme nodes
AC8 Given edge i find the e; edges to which it connects
AC9 Given edge i find the two adjoining faces

4 Shaw et al.

—— RELATION
=== PARTIAL RELATION

NODE

Fig. 2 — VPF’'s winged-edge topology relationships

—> DIRECTED EDGE

” ~x COUNTERCLOCKWISE
! ROTATION

@ NODE

LEFT FACE OF ¢,
\\ Fig. 3 — Attributes of an edge in VPF’s
] winged-edge topology (level 3)
EDGE OF ¢,
RIGHT FACE OF ¢;

The node (referred to as a connected node in VPF) table stores the node’s ID along with the
node’s coordinates. An additional column is used to specify a partial relationship between a node
and the edges around it. This is achieved by associating with each node a pointer to one of its
containing edges (called the first edge). This relationship allows the navigation around a node, and
as a result, makes the implementation of access primitives AC4, ACS5, and AC6 more efficient.

The partial relationship between a face and one of its enclosing edges is implemented using two
tables: a face table and a ring table. The use of these two tables allows the navigation around the
face’s enclosing edges (known as an outer ring in VPF) and around any inner ring embedded in
the face. The face table stores

* A unique face ID number; and
e A pointer to the outer ring in the ring table.

An Initial Design of Extended VPF for Modeling and Simulation 5

The ring table points to one of the edges of each ring of a face. A ring table is composed of the
following three columns:

* a ring ID number,
* a pointer to a face, and
* a pointer to one of the ring’s edges (called the start edge).

In a ring table, the ordering of the rows is important. The first row in a ring table with a new face
ID is always the face’s outer ring. Any subsequent row with the same face ID is an inner ring.

These four VPF tables can be utilized without modification to store TINs. The sample triangular
network of Fig. 4 is used for illustration. Partially constructed node, edge, face, and ring tables are
shown in Tables 2, 3, 4, and 5, respectively.

3.2 Encoding TINs Using a Vertex-Based Data Structure

The vertex-based data structure stores the one-to-many relation node — node. Therefore, a
variable number of fields needs to be allocated in the data structure. A partial encoding of the
example of Fig. 4 is shown in Table 6. The vertex-based data structure stores a node ID, the node’s
three coordinates, and pointer to the neighboring nodes in clockwise (or counterclockwise) order.

Table 2 — Partial Connected Node
Table for Fig. 4

D X1y Z [FIRST_EDGE

L x|z 6
2 Xa Y2 Zy 5

Table 3 — Partial Edge Table for Fig. 4

START_ { END_ | RIGHT_ |LEFT_ | RIGHT_ |LEFT_
ID | NODE | NODE | EDGE |EDGE | FACE | FACE | COORDINATES

1 4 10 6 3 5 4 X4Y424X10510210
Table 4 — Partial Face Table 5 — Partial Ring
Table for Fig. 4 Table for Fig. 4
ID |RING_POINTER ID | FACE |START_EDGE

Shaw et al.

| E=EDGE C=CONNECTEDNODE T=TRIANGLE

C2

C3

Fig. 4 — Sample TIN

Table 6 — Partial Encoding of the TIN Table
Corresponding to Fig. 4 (Using a Vertex-Based
Data Structure)

ID X Y Z | VERTEX NEIGHBORS

7 2104
315121110 1

X1 Y1
2 X2 | Y2 | 22

The relation node — edge is implicitly stored in
the table. As stated by Floriani (1989), this data
structure completely characterizes a triangular
subdivision without any ambiguity.

3.3 Encoding TINs Using a Triangle-Based
Data Structure

In general, a triangle-based data structure
encodes TINs using two tables: a node table and
a TIN table. The TIN table stores the triangle ID
number, pointers to the triangle’s three vertices
and pointers to the neighboring triangles. The

pointers to the nodes and neighboring triangles are stored in consistent clockwise (or counterclock-
wise) order. As a result, the TIN-table explicitly stores, in a single table, the relations face — node
and face — face. Table 7 shows the TIN table corresponding to Fig. 4 using a triangle-based data
structure. Two other relationships, node — edge and edge — face, are implicitly stored in the TIN

table.

3.4 Encoding TINs Using an Improved Triangle-Based Data Structure

As will be demonstrated in the next section, the triangle-based data structure implements the
access primitives AC1, AC2, and AC3 optimally. However, the access primitives AC4, ACS, and
AC6 cannot be implemented efficiently with this data structure. This is due to the fact that, with
the triangle-based data structure, navigation around a given node in an efficient manner is impossible.

Table 7 — Partial Encoding of the TIN Table Corresponding to Fig. 4
(Using a Triangle-Based Data Structure)

VERTEX | VERTEX | VERTEX | TRIANGLE | TRIANGLE | TRIANGLE
ID 1 2 3 1 2 3
1 1 2 10 Null 2 5
2 11 10 6 3 1

An Initial Design of Extended VPF for Modeling and Simulation 7

To remedy this situation, DMAP proposes to modify the triangle-based approach in such a way
that the resulting data structure implements primitives AC4, ACS5, and AC6 in an efficient manner.
The new structure will be referred to as an improved triangle-based data structure. The new data
structure leaves the TIN table unchanged. However, the node table is augmented with a partial
relationship between a node and its containing triangles. This is achieved by adding an extra field—
referred to as first-TIN—in the node table. This first-TIN field will contain a pointer to one of the
triangles containing the given node. This will permit the navigation around a node that results in
an efficient implementation of AC4, ACS, and AC6. A partial node table of an improved triangle-
based encoding of the sample TIN in Fig. 4 is shown in Table 8.

4.0 COMPARATIVE ANALYSIS OF THE TIN SCHEMATAS

In this section, the data structures introduced in the previous sections are evaluated in terms of
their storage requirement and the time complexity to retrieve basic access primitives. Not all access
primitives listed in Table 1 are applicable. For instance, the triangle-based data structure does not
store edges explicitly and as a result access primitive AC7 is meaningless in this context. However,
in the same context, AC7 and AC8 can be implemented efficiently if an edge is identified using
its two extreme nodes. Without loss of generality, our time evaluation will be restricted to the first
six basic access primitives.

The time performance of the four data structures is shown in Table 9. The time performance
investigation follows the methodology outlined in (Woo 1985). When direct access to a relationship
between geometric primitives is possible, the time access is said to be constant. Direct access
means that the access to the relationship is performed by
accessing an existing table using its primary key. For
instance, in the triangle-based data structure, given a triangle
ID i, it is possible to determine its three vertices in constant
time. Indeed, using the TIN table’s primary key i one
could easily determine the three nodes around the triangle
(access primitive AC1), especially if a spatial index were
available. Constant access time constitutes a lower bound
D | X Y Z | FIRST TIN and will be referred to throughout as k. Alternatively, it
xx | y1 |z 1 may be necessary to access a relationship using a foreign
key. In this case, the access is said to be a linear function
of the number of nodes. For example, suppose that, in the
case of the triangle-based data structure, we would like to
determine the n; nodes around node i (access primitive

Table 8 — Partial Encoding of the
Connected Node Table Corresponding
to Fig. 4 (Using an Improved
Triangle-Based Data Structure)

2 X2 Y2 Zy 2

Table 9 — Time Performance of Data Structures

(k = constant, n; = number of nodes connected to node i, n = total number of TIN
nodes, n/a =not applicable)

ACl1 | AC2 | AC3| AC4 | AC5 | ACS6 TOTAL
VPF’s Winged-Edge Topology k k k | Ony) | Oy | Oy | 3k + O(ny))
Vertex-Based n/a | n/a n/a | n/a k n/a n/a
Triangle-Based k k k| On) | O(n) | Oo(n) | 3(k+ O(n)
Improved Triangle-Based k k k | O(n) | Ony | Ony) | 3(k + O(ny))

8 Shaw et al.

AC5). Clearly this information can only be extracted from the TIN table. However, we are given
only i, a foreign key in the TIN table. The only way to obtain the n; nodes is by sequentially
scanning the TIN table multiple times. In this case, the access time is a linear function of the
number of TIN nodes n. Linear access time constitutes the worst-case (upper bound) access time
and will be referred to as O(n). Constant and linear time access are the two extreme cases. The use
of partial relationships between arbitrary primitives yields an intermediate access time. Consider
AC4 in the context of the improved triangle-based data structure. Here, we would like to determine
the ¢; triangles containing node i. Clearly, without the partial relationship between a node and the
triangle primitives, the access time is O(n). However, using this existing partial relationship, we can
use the node ID to obtain, from the connected node table, the ID of one of the triangles around the
given node. We can then use this triangle ID to obtain, from the TIN table, other triangles and
nodes of interest. This process is repeated until all of the triangles around node i are obtained. The
access time, in this case, is O(n;). In essence, the existence of this partial relationship allows for
the navigation around a given node and, as a result, allows for the determination of the ¢; triangles,
e; edges and n; nodes around node i in O(n;) access time. Note that, in general, the number of TIN
nodes n is very large compared to the n; nodes connected to a given node i.

From Table 9, it is also seen that the triangle-based data structure is optimal with respect to
ACI1, AC2, and AC3. However, it has a worst-case performance when it comes to primitives AC4,
ACS5, and AC6. The total access time (cumulative access time of the six access primitives)
3(k + O(n)) of the triangle-based approach does not compare favorably with the total access
time 3(k + O(n;)) of VPF’s winged-edge topology. However, notice that the total access time
3(k + O(n;)) of the improved triangle-based data structure represents a dramatic improvement from
that of the traditional triangle-based data structure. This dramatic improvement is obtained with
minimal additional storage cost (approximately an additional 0.5% storage as shown in the following

paragraph).

The storage requirement of each data structure is presented in Table 10 and is expressed in
terms of the number of fields required by each data structure. The figures shown in Table 2 are
based on the fact that any planar triangulation of a set of n nodes, B of which belong to the convex
hull (boundary), has exactly 3n— B -3 edges and 2n— B -2 triangles (Shamos 1978). It is noted
that, in general, B is very small compared to n. VPF’s winged-edge topology requires the largest
amount of storage. It exceeds the storage requirement of the vertex-based and triangle-based data
structures by a factor of about 6 and 3, respectively. To reduce the storage requirement of VPF’s
winged-edge topology, one could take advantage of the fact that, unlike an arbitrary face, a triangle
cannot have an inside edge. Since, in this case, there are no inner rings, one could eliminate the
ring table and replace (in the face table) the pointer to the ring table by a pointer to the face’s

Table 10 — Storage Requirements for the Data Structures

(n = number of nodes in the TIN, B = number of nodes in
the TIN’s convex hull)

DATA STRUCTURE STORAGE REQUIREMENT
VPF’s Winged-Edge Topology 54n - 18B—49
Vertex-Based 10n-2B-6
Triangle-Based 18n-7B -~ 14
Improved Triangle-Based 19n-7B - 14

An Initial Design of Extended VPF for Modeling and Simulation 9

starting edge. This will, however, result in only a modest 10% reduction in the storage requirement
of VPF’s winged-edge topology. The vertex-based data structure requires the least amount of stor-
age. Note that the storage requirement of the triangle-based and improved triangle-based data
structures are essentially the same (the difference is 0.5% in favor of the traditional triangle-based
data structure). However, the time performance of the improved triangle-based data structure is, as
shown previously, far superior to that of the traditional triangle-based data structure.

Since the vertex-based data structure stores a node and its surrounding nodes, it performs AC5
optimally. The main problem with the vertex-based data structure is that it is of little practical use
in applications where area features are to be associated with triangles. This is because the vertex-
based data structure does not store triangles. In contrast, since the triangle-based data structure
stores (in the TIN table) a triangle, its three nodes, and its three edges (each pair of nodes implicitly
represents an edge), features associated with a triangle, its nodes, and its edges can all be specified
in a single feature table. For instance, a distributed rainfall-runoff model (Tachikawa et al. 1994),
is encoded by using TINs and a triangle-based data structure. Several edge features such as side-
index and side-component are stored. The side component-index specifies whether an edge belongs
to a valley, slope, ridge, channel, or a boundary, and a side-attribute index specifies whether water
flows out of an edge, along an edge, or into an edge.

The use of VPF’s winged-edge topology has the advantage that it essentially does not yield any
changes to VPF. However, this approach suffers from high storage cost. Additionally, this approach
will require that the TIN triangles be stored along with arbitrary faces. This option is clearly not
desirable.

The improved triangle-based data structure is as fast as VPF’s winged-edge topology but requires
one third less storage. The improved triangle-based data structure can easily be incorporated into
VPF as a new primitive (Sec. 5.0). The introduction of this new primitive will, as shown in the next
section, allow for the efficient storage and access of terrain elevation data as well as their integration
with ground surface features.

Based on the preceding comparative analysis, DMAP recommends that the improved triangle-
based data structure be utilized to encode TINs in EVPF. In the next section, the proposed data
structure will be incorporated into VPF.

5.0 EVPF TABLE DEFINITIONS

Figure 5 shows the primitive directory of EVPF. A new optional primitive, TIN-face, has been
added to topology level 3. This new primitive table comes with optional attribute, render-related
attribute, and spatial index tables. The TIN-face table definition is shown in Table 11. In this table,
vertices and adjacent triangles are stored in a counterclockwise fashion. Table 12 shows the defi-
nition of a modified connected node table. The new table includes an additional column, First-TIN,
that implements the partial relationship between a connected node and its containing triangles.

While the TIN-face and the connected node table can be used to generate a wire mesh frame, a
complete 3-D image requires more information about each primitive. To provide this information,
a TIN-face attribute table must be introduced to store attribute data for each TIN primitive. Although
stored at the primitive level, this table can be compared with an area feature table storing attribute
data for the corresponding face primitives. The TIN-face attribute table stores attribute data for
every triangle regardless of its relation or lack of relation to an area feature. The definition of the
TIN-face attribute table is shown in Table 13.

10

Shaw et al.

D = OPTIONAL D: MANDATORY *

= CONTAINS

Y

Y

Y

Y

Y

FACE | TIN-FACE EDGE ENTITY NODE | | CONNECTED TEXT
TABLE " TABLE: " TABLE TABLE NODE TABLE | | TABLE
ENTITY NODE
SPATIAL
EDGE (e) EDGE INDEX TEXT
BOUNDING | || - IN-FAGE "1 || | BOUNDING | SpATIAL
RECTANGLE| [| ATTRIBUTE | RECTANGLE NDEX
TABLE (TABLE - TABLE CONNECTED
NODE —
£ RENDER: “NDEX VARIABLE
TBlE | "] ATTRBUTE" | [™|ENGTH INDEX > LENGTH
o TABLE INDEX
ot :) \)
' (. PN N 3
FACE . TINFACE . EDGE
-1 SPATIAL | b1 SPATIAL® .| b-| SPATIAL
| INDEX CINDEX) | INDEX

Fig. 5 — Extended primitive directory (level 3 topology)

Table 11 — TIN-Face Table Definition (filename: TIN)
(Op/Man = Optional/Mandatory Status, M = Mandatory, P = Primary Key,

N = NonUnique Key, I =Long Integer, K = Triplet ID, “/” = “or”)
COLUMN COLUMN | KEY
NAME DESCRIPTION TYPE TYPE | OP/MAN

ID TIN Primary Key I P M

VERTEX1 First vertex (foreign key I N M
to the connected node table)

VERTEX?2 Second vertex (foreign key I N M
to the connected node table)

VERTEX3 Third vertex (foreign key to I N M
the connected node table)

ADJACENT]1 | ID of triangle adjacent to /K N M
current triangle along edge
between Vertex one
and two

ADJACENT?2 | ID of triangle adjacent to /K N M
current triangle along edge
between Vertex two
and three

ADJACENTS3 | ID of triangle adjacent to /K N M
current triangle along edge
between Vertex three
and one

NOTE: The vertices and adjacent triangles are stored in counterclockwise fashion.

An Initial Design of Extended VPF for Modeling and Simulation

11

Table 12 — Connected Node Table Definition (Filename: CND)

(same acronyms as Table 11, with OF = Optional Feature Pointer, O = Optional,
C/Z = 2-coordinate structures, B/Y = 3-coordinate structures, MI = “Mandatory for
TINs,” and M<n> = “Mandatory: topology level <n>")

COLUMN COLUMN | KEY
NAME DESCRIPTION TYPE TYPE | OP/MAN

ID Node Primary Key I P M

* PFT_ID Point Feature table ID 1 N OF

CONTAINING_FACE | Always null (included X N 0]
for compatibility)

FIRST_TIN TIN key (foreign key to I N MI
the TIN-face table)

FIRST_EDGE Edge key (foreign key to I N M1-3
the edge table)

COORDINATES Node Coordinates C/Z/B/Y N M

Table 13 — TIN-Face Attribute Table Definition (Filename: TINATTR)

(same acronyms as Tables 11 and 12)

COLUMN COLUMN | KEY
NAME DESCRIPTION TYPE TYPE | OP/MAN
ID TIN Feature Primary Key I P M
RENDER_VALUE | Render values for this triangle I N o
(foreign key to the
RENDER.RAT table)
<Attribute n> nth attribute Any Any 0]

NOTE: The table TINATTR has a 1:1 relation with the table TIN.

To adequately render 3-D surfaces and objects, certain attributes must be defined for each
triangle or for each vertex of each triangle. Among the attributes that could be defined are color,
ambient reflection, diffuse reflection, specular reflection, emissions, and shininess. The color could
be represented by a 3-tuple (R, G, B) of floating point values between 0 and 1. The RGB values
represent the primary colors red, green, and blue. Black is represented by (0, 0, 0) and white by
(1, 1, 1). The grayscales are represented in between by equal RGB values. The other values listed
above are used to determine shading and the various effects light has on the object. To eliminate
redundancy, these values can be stored in a related table and referenced by a number of individual
triangles in the TIN-face table. The actual values needed by an individual rendering package can
vary and as a result no standard fields are defined. The definition of the render-related attribute
table is shown in Table 14.

Unlike existing features, it would be impossible to construct a TINed object from a single First-
TIN as a face is constructed from a single start edge. For this reason, index and join tables would
have to be extended and made mandatory for TIN-related features. A TIN feature index table

12 Shaw et al.

Table 14 — Render-Related Attribute Table
(Filename: RENDER.RAT)

(same acronyms as Tables 11, 12, and 13)

COLUMN COLUMN | KEY
NAME DESCRIPTION TYPE TYPE | OP/MAN
ID Render Primary Key I P M
<Attribute n> | nth attribute Any Any 0}

(TIN.FIT) can be used to define the relation between feature objects and the TIN primitives as well
as to enhance the performance of primitive-to-feature and feature-to-primitive queries. In other
feature index tables, there is at least one entry for each primitive and at least one entry for each
relative feature. When more than one primitive is used to construct a feature, the feature has
multiple entries in this table. The same is also true when a primitive corresponds to more than one
feature. TIN and area features would generally be made up of one or more TIN primitives. To
efficiently answer queries, these relationships must be defined explicitly. The TIN.FIT can be used
to store these relationships. The existence of a specific TIN primitive in this index file demonstrates
its use in constructing a TIN or area feature. The nonexistence of a specific TIN primitive implies
that it is not used to construct any features.

A TIN feature index table can be employed to answer queries in both directions, whereas TIN
feature join tables (*.IJT) can be used to enhance performance of feature-to-primitive queries.
It would be used in the same manner as the area feature join tables. Each TIN and area feature table
would have a join table with an entry for each TIN primitive used to construct a single feature.

6.0 TINS IN TILED COVERAGES

VPF allows cross-tile referencing via the introduction of a triplet ID data type. Each triplet ID
begins with an 8-bit type byte depicting the format for the rest of the field. The three field names
are ID representing the internal tile primitive ID, TILE_ID representing the external tile reference
ID, and EXT_ID representing the external tile primitive ID. The first two bits of the type byte
indicate the length of the internal ID; the second two bits indicate the length of the TILE_ID field;
the third two bits indicate the length of the EXT_ID; the final two bits are reserved. The field
length is either zero, one, two, or four bytes depending on the value stored in the two bits (i.e., 00
indicates zero bytes, while 11 indicates four bytes).

When a triplet ID is encountered, the type byte is analyzed and the resulting values used to find
the correct primitive(s). In reference to an adjacent triangle, the existence (nonzero length) of the
TILE_ID and EXT_ID fields indicates that the edge of the triangle is on a tile boundary and
the adjacent triangle primitive is included in the tile specified by the TILE_ID. The EXT_ID is then
used within the correct tile to find the appropriate primitive. This primitive should have corresponding
triplet ID pointers to the original triangle.

In a tiled coverage, triangles will not be allowed to cross tile boundaries. This can easily be
achieved by TINing each tile separately. In addition, care must be taken so that triangles at the edge

An Initial Design of Extended VPF for Modeling and Simulation 13

of a tile have at most three neighboring triangles (including the neighboring triangle in the adjacent
tile). This can be achieved by using a constrained triangulation algorithm. In a constrained trian-
gulation algorithm, predefined edges are used during the triangulation process. This ensures that the
line and area features (surrounded by those edges) are preserved and exhibited by the resulting
triangulation. This leads to a second method of generating TINs for tiled coverages. The tile
boundaries would be defined as constrained edges. This would ensure that no triangles are bisected
by the tile boundary while preserving the adjacency requirement.

7.0 A COMPREHENSIVE EXAMPLE

The example in Fig. 6 displays EVPF’s ability to store elevation data in the form of a TIN.
(Note: Primitive numbering is local to each tile.) Attribute data can then be assigned to each
primitive by the introduction of a TIN feature table. This information transcends mere elevation
points but provides actual details about the characteristics of the surface.

E=EDGE F=FACE C=CONNECTEDNODE T=TRIANGLE = =TILE BOUNDARY

eesecee =|INEFEATURE o ¢ = AREA FEATURE

T25

Cc20
TILE S

Fig. 6 — A sample tiled TIN

14 Shaw et al.

The example contains a tiled set of points that are used to construct a TIN in the presence of
both area and line features. Connected node 6 of tile 2 is a local maximum point (a peak) where
all adjacent nodes have a lower elevation. An arbitrary face can be used to represent this peak
surrounded by edges 4 through 10 in tile 2. A face table would have a pointer to one of the edges
from which the remaining bounding edges can be determined.

There are two line features contained in the example. The first is composed of edge 1 in tile 3,
edges 1, 2 and 3 in tile 2, edges 1, 2, 3, and 4 in tile 5 and edge 1 in tile 4. This feature could be
viewed as a river or a valley. The points along the line have a lower elevation in respect to any
adjacent nodes not on the line. The second is composed of edge 2 in tile 3 and edges 5, 6, 7, &,
and edge 9 in tile 6 and can be viewed as a ridge line where all adjacent nodes not on the ridge
have a lower elevation.

Tables 15 through 26 represent the partial encoding of the tiled sample TIN of Fig. 6.

Table 15 — Connected Node Table (Tile 2)

ID | FIRST_TIN | FIRST_EDGE | COORDINATES
5 1 Null X5y550
6 1 Null x6y61 00

9 19 1 X9y930

13 17 2 X1 3)’1325

16 13 Null X16Y1630

17 15 3 X17y1720

Table 16 — Connected Node Table (Tile 5)

ID |FIRST_TIN | FIRST_EDGE | COORDINATES
1 1 Null X1y130
2 2 1 X2y220

Table 17 — TIN-Face Primitive Table (Tile 2)

VERTEX | VERTEX | VERTEX | ADJACENT | ADJACENT { ADJACENT
ID 1 2 3 1 2 3
1 1 5 6 (_7151) (7:',— (27'7_
2 1 6 2 (1 [t (3”'7') ('3'7'
14 11 16 17 (135'y' (-9572) (159-7'

An Initial Design of Extended VPF for Modeling and Simulation

15

Table 18 — TIN-Face Primitive Table (Tile 5)

VERTEX | VERTEX | VERTEX | ADJACENT | ADJACENT | ADJACENT
ID 1 2 3 1 2 3
1 1 5 6 (',4,1) (7v':' (2,'7')
2 2 1 6 ('32114) (1"9- (3,-9'

Note: The adjacent triangle faces are of type triplet ID (Internal Primitive ID, Tile ID,
External Primitive ID).

Table 19 — Edge Table (Tile 2)

START_ | END_ { LEFT_ | RIGHT_ | LEFT_ | RIGHT_
ID NODE NODE | EDGE EDGE FACE FACE COORDINATES
1 9 13 (-,3,1) Q@.-.- 1 1 X1,1¥1,121,1X1,2Y1,221,2
4 1 5 130,-.- 5,--- 2 1 X4,1¥4,124,1X4,2Y4,224,2
5 5 10 | @49 (6,-,- 2 1 X5,1Y5,125,1X5,2Y5 225 2
10 2 1 9,-.- 4,-,- 2 1 X10,1Y10-1210,1X10,2Y10,2210,2
Table 20 — Face Table Table 21 — Ring Table
(Tile 2) (Tile 2)
ID | RING_POINTER ID | FACE | FIRST_EDGE
2 2 2 2 4
Table 22 — TIN-Face Attribute Table
SIDE SIDE SIDE
RENDER | SOIL | ATTRIBUTE | ATTRIBUTE | ATTRIBUTE
ID | VALUE* | TYPE ONE TWO THREE
10 15 43 1 2 2
11 15 43 2 2 1
20 22 45 3 1 2
30 24 46 3 1 2

*NOTE: The Render Value is a foreign key to the render.rat table specified
in Table 23. The soil type and side attribute fields and their corresponding
meanings can be documented in a primitive level value description table.
The side attribute values are as follows: 1 —water flows out this side,
2 — water flows along this side, 3 — water flows in this side.

16 Shaw et al.

Table 23 — Render-Related
Attribute Table

ID |RED | GREEN | BLUE

15 1 0.75 0.40 0.60
22 10.20 0.30 0.90

30 | 0.10 0.90 0.20

Table 24 — Mountain Area Feature Table (Feature
Class ID =4)

ID NAME TOTAL AREA | HIGHEST PEAK

2 | Mt. Sparta 600 100

Table 25 — Feature Join Table — Area to TIN

ID | MOUNTAIN.AFT_ID | TILE_ID | TIN_ID
10 2 2 1

11 2 2 2

12 2 2 3

13 2 2 7

14 2 2 8

15 2 2 9

16 2 2 10

Table 26 — TIN Feature Index Table

ID | TILE_ID | PRIM_ID | FC_ID | FEATURE_ID
21 2 1 4 2
22 2 2 4 2
23 2 3 4 2
24 2 7 4 2
25 2 8 4 2
26 2 9 4 2
27 2 10 4 2

An Initial Design of Extended VPF for Modeling and Simulation 17

8.0 PRIMITIVE ATTRIBUTE TABLES AND MULTIVALUED ATTRIBUTES

A classic example of the usefulness of primitive attribute tables can be seen in the following.
In displaying a TIN-shaded relief representation of a surface, viewing software normally requires
attribution for triangles or vertices that should be transparent to the user (e.g., color). This information
can be stored in a primitive attribute table and render-related attribute table.

While not an extension to VPF per se, variable length fields could allow for attributes to have
more than one value. Since not all attribute values describe mutually exclusive cases, defining
multiple values to one attribute is a natural extension, particularly when knowing all of a particular
feature’s attribution is a necessity. An example is the AFA (Available Facilities Attribute), where
AFA 9 implies the existence of a fueling station and AFA 23 implies the existence of a boat hoist.
Clearly, a feature may have both capabilities, in which case the integers 9 and 23 would be stored
in a variable length field of the attribute table.

9.0 SOFTWARE CONSIDERATIONS

To accomplish a full implementation of the EVPF, software must be constructed, not only to
build tables (both VPF and the extensions) but also to compute the TIN data for storage in the TIN
tables. DMAP has engineered a set of tools to accommodate the creation of an EVPF prototype,
tentatively named Modeling and Simulation Extended Vector Product. However, the creation of an
appropriate TIN from a given data set requires investigation. Examples of algorithms are available
in the commercial geographic information system packages such as ARC/INFO (commercial geographic
information system). Regardless of the algorithm, the data structures created in this report will be
able to accommodate any given TIN.

10.0 CONCLUSIONS

The proposed EVPF permits the efficient storage and retrieval of TIN-based elevation data and
the integration of such data with ground surface features. Based on the overall performance of four
relevant data structures, an improved triangle-based data structure ideally suits the EVPF. An
optional new primitive, TIN-face, has been added at topology level 3. To implement a partial
relationship between a connected node and its containing triangles, a new column has been added
to the connected node table. This new column points to one of the triangles containing the specified
connected node. A TIN-face attribute table and a render-related attribute table have been added so
that rendering and attribute data can be associated with each triangle, its edges, and its three
extreme vertices. The render-related attribute table, which is essentially a primitive attribute table,
would present a new concept: storing so-called “attribute information™ (transparent to the user) at
the primitive level.

Currently, VPF employs area and line feature tables to crudely represent real world 3-D surfaces
and objects. The introduction of the TIN-face primitive allows for an elegant method of rendering
terrain in three-dimensions. The problem of representing 3-D objects, such as buildings and bridges,
remains as a needed future extension to VPF. Although the TIN face and TIN-face attribute tables
can be used to store the primitives and their appearance for both terrain and objects, a TIN feature
table (e.g., *.IFT) would have to be introduced at the coverage level to define the meaning or nature
of objects. This table would function in a similar to the area feature table. A 3-D object would be
triangulated and the resultant triangles stored in the TIN-face table. Each object would have a

18 Shaw et al.

single entry in the feature table. Intuitively, this seems to be a straightforward extension but
presents additional problems. While the current design anticipates that extension, future and further
consideration would have to be made for the development of the TIN feature index, TIN feature
join and minimum bounding cube tables.

Finally, VPF allows for variable-length fields in its tables. Since the M&S community needs
sufficient attribution, these variable-length fields should be utilized to the fullest. The capabilities
of EVPF, and hence the M&S community, would benefit from the use of these fields.

11.0 RECOMMENDATIONS

DMAP’s recommendations for a VPF more ideally suited for the M&S community may be
summarized as follows:

* Incorporate the new primitive structure to allow for TINs encoded in the improved triangle-
based data structure,

» Allow for additional attribute information stored at the primitive level (e.g., RENDER.RAT), and

» Use variable-length fields to store common multivalued attribute information.

The proposed georelational format, EVPF, is feasible and would be an essential step toward satisfying
essential M&S requirements with vector data, given that one utilizes the relational database model.
DMAP is currently developing an object-oriented database approach that will offer even greater
improvements over VPF.

12.0 ACKNOWLEDGMENTS

This effort was sponsored by the Defense Mapping Agency’s Terrain Modeling Program Office
and the Defense Modeling and Simulation Office, under Program Element 630603832D, with Mr.
Jerry Lenczowski as program manager.

13.0 REFERENCES

Baumgart, B. G., “Winged-Edge Polyhedron Representation,” Report CS-320, Computer Science
Department, Stanford University, Oct. 1972.

Department of Defense, “Vector Product Format — Military Standard,” MIL-STD-2407, Department
of Defense, May 1993.

Floriani, L. D., “Surface Representations Based on Triangular Grids,” The Visual Computer 3(27),
27-50 (1987).

Floriani, L. D., “A Pyramidal Data Structure for Triangle-Based Surface Description,” JEEE Computer,
Mar. 1989, pp. 67-78.

Jones, C., D. B. Kidner, and J. M Ware, “The Implicit Triangulated Irregular Network and Multiscale
Spatial Databases,” The Computer Journal 37(1), 43-56 (1994).

An Initial Design of Extended VPF for Modeling and Simulation 19

Littlefield, K. E., “The Defense Mapping Agency’s Digital Production System (DPS),” Cartography
and Geographic Information Systems 22(2), 119-127 (1995).

Polis, M. F. and J. McKeown, “Iterative TIN Generation from Digital Elevation Models,” IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 1992,
pp- 787-790.

Polis, M. F., J. G. Gifford, and J. McKeown, “Automating the Construction of Large-Scale Virtual
Worlds,” IEEE Computer 28(7), 58-64 (1995).

Shamos, M. 1., “Computational Geometry,” Ph.D. Thesis, Yale University, New Haven, CT, 1978.

Shaw, K., V. Miller, B. Ray, R. Broome, T. Fetterer, M. Abdelguerfi, E. Cooper, and C. Wynne “An
Extended Vector Product Format Profile for Modeling and Simulation,” NRL/MR/7441--95-
7704, Naval Research Laboratory, Stennis Space Center, MS, Apr. 1996.

Tachikawa, Y., M. Shiiba, and T. Takasao, “Development of a Basin Geomorphic Information
System Using a TIN-DEM Data Structure,” Water Resources 30(1), 9-17, Paper No. 93062
(1994).

Woo, T. C., “A Combinatorial Analysis of Boundary Data Structure Schemata,” IEEE Computer
Graphics and Applications 5(3), 19-27 (1985).

Appendix

ACRONYM LIST
3-D three dimensional
AFA Available Facilities Attribute
ARC/INFO commercial geographic information system
DMA Defense Mapping Agency
DMAP Digital Mapping, Charting, and Geodesy Analysis Program
DTED Digital Terrain Elevation Data
EVPF Extended Vector Product Format
M&S Modeling and Simulation
RGB Red Green Blue
TIN Triangulated Irregular Network
VPF Vector Product Format

21

